基于以下原因,俺估计RSA算法会被越来越多的共享软件采用:
1、原理简洁易懂
2、加密强度高
3、专利限制已过期
4、看雪老大三番五次呼吁共享软件采用成熟的非对称加密技术
所以,大家应该对RSA算法进行深入了解。
RSA依赖大数运算,目前主流RSA算法都建立在512位到1024位的
大数运算之上,所以我们在现阶段首先需要掌握1024位的大数
运算原理。
大多数的编译器只能支持到64位的整数运算,即我们在运算中
所使用的整数必须小于等于64位,即:0xffffffffffffffff
也就是18446744073709551615,这远远达不到RSA的需要,于是
需要专门建立大数运算库来解决这一问题。
最简单的办法是将大数当作字符串进行处理,也就是将大数用
10进制字符数组进行表示,然后模拟人们手工进行“竖式计算”
的过程编写其加减乘除函数。但是这样做效率很低,因为1024
位的大数其10进制数字个数就有数百个,对于任何一种运算,
都需要在两个有数百个元素的数组空间上做多重循环,还需要
许多额外的空间存放计算的进位退位标志及中间结果。当然其
优点是算法符合人们的日常习惯,易于理解。
另一种思路是将大数当作一个二进制流进行处理,使用各种移
位和逻辑操作来进行加减乘除运算,但是这样做代码设计非常
复杂,可读性很低,难以理解也难以调试。
于是俺琢磨了一种介于两者之间的思路:
将大数看作一个n进制数组,对于目前的32位系统而言n可以取
值为2的32次方,即0x10000000,假如将一个1024位的大数转
化成0x10000000进制,它就变成了32位,而每一位的取值范围
就不是0-1或0-9,而是0-0xffffffff。我们正好可以用一个无
符号长整数来表示这一数值。所以1024位的大数就是一个有32
个元素的unsigned long数组。而且0x100000000进制的数组排列
与2进制流对于计算机来说,实际上是一回事,但是我们完全
可以针对unsigned long数组进行“竖式计算”,而循环规模
被降低到了32次之内,并且算法很容易理解。
例如大数18446744073709551615,等于“ffffffff ffffffff”,
它就相当于10进制的“99”:有两位,每位都是ffffffff。
而大数18446744073709551616,等于“00000001 00000000
00000000”,它就相当于10进制的“100”:有三位,第一位是
1,其它两位是0。如果我们要计算18446744073709551616
-18446744073709551615,就类似于100-99:
00000001 00000000 00000000
- ffffffff ffffffff
-----------------------------
= 0 0 1
所以,可以声明大数类如下:
/****************************************************************/
//大数运算库头文件:BigInt.h
//作者:afanty@vip.sina.com
//版本:1.0 (2003.4.26)
//说明:适用于MFC
/****************************************************************/
#define BI_MAXLEN 40
#define DEC 10
#define HEX 16
class CBigInt
{
public:
int m_nSign; //记录大数的符号,支持负值运算
int m_nLength; //记录0x10000000进制的位数,0-40之间,相当于2进制的0-1280位
unsigned long m_ulvalue[BI_MAXLEN]; //记录每一位的“数字”
CBigInt();
~CBigInt();
//将大数赋值为另一个大数
CBigInt& Mov(CBigInt& A);
//将大数赋值为编译器能够理解的任何整形常数或变量
CBigInt& Mov(unsigned __int64 A);
//比较两个大数大小
int Cmp(CBigInt& A);
//计算两个大数的和
CBigInt Add(CBigInt& A);
//重载函数以支持大数与普通整数相加
CBigInt Add(long A);
//计算两个大数的差
CBigInt Sub(CBigInt& A);
//重载函数以支持大数与普通整数相减
CBigInt Sub(long A);
//计算两个大数的积
CBigInt Mul(CBigInt& A);
//重载函数以支持大数与普通整数相乘
CBigInt Mul(long A);
//计算两个大数的商
CBigInt Div(CBigInt& A);
//重载函数以支持大数与普通整数相除
CBigInt Div(long A);
//计算两个大数相除的余数
CBigInt Mod(CBigInt& A);
//重载函数以支持大数与普通整数相除求模
long Mod(long A);
//将输入的10进制或16进制字符串转换成大数
int InPutFromStr(CString& str, const unsigned int system);
//将大数按10进制或16进制格式输出到字符串
int OutPutToStr(CString& str, const unsigned int system);
//欧几里德算法求:Y=X.Euc(A),使满足:YX mod A = 1
CBigInt Euc(CBigInt& A);
//蒙哥马利算法求:Y=X.Mon(A,B),使满足:X^A mod B = Y
CBigInt Mon(CBigInt& A, CBigInt& B);
};
注意以上函数的声明格式,完全遵循普通整数运算的习惯,例如大数
Y=X+Z 相当于 Y.Mov(X.(Add(Z)),这样似乎没有Mov(Y,Add(X,Z))
看起来舒服,但是一旦我们重载运算符“=”为“Mov”,“+”为“Add”,
则Y.Mov(X.(Add(Z))的形式就等价于 Y=X+Z。
俺不知道其他编程语言里是否支持运算浮重载,至少这样定义函数格式
在C++里可以带来很大的方便。
下面让我们来实现大数类的主要成员函数:
/****************************************************************/
//大数运算库源文件:BigInt.cpp
//作者:afanty@vip.sina.com
//版本:1.0 (2003.4.26)
//说明:适用于MFC
/****************************************************************/
#include "stdafx.h"
#include "BigInt.h"
//初始化大数为0
CBigInt::CBigInt()
{
m_nSign=1;
m_nLength=1;
for(int i=0;i=0;
}
//采用缺省的解构函数
CBigInt::~CBigInt()
{
}
//大数比较,如果大数A位数比大数B多,当然A>B
//如果位数相同,则从高位开始比较,直到分出大小
int CBigInt::Cmp(CBigInt& A)
{
if(m_nLength>A.m_nLength)return 1;
if(m_nLength=0;i--)
{
if(m_ulvalue>A.m_ulvalue)return 1;
if(m_ulvalue)return -1;
}
return 0;
}
//照搬参数的各属性
CBigInt& CBigInt::Mov(CBigInt& A)
{
m_nLength=A.m_nLength;
for(int i=0;i=A.m_ulvalue;
return *this;
}
//大数相加
//调用形式:N.Add(A),返回值:N+A
//若两大数符号相同,其值相加,否则改变参数符号再调用大数相减函数
/******************************************************************/
例如:
A B C
+ D E
--------------
= S F G H
其中,若C+E<=0xffffffff,则H=C+E,carry(进位标志)=0
若C+E>0xffffffff,则H=C+E-0x100000000,carry=1
若B+D+carry<=0xfffffff,则G=B+D,carry=0
若B+D+carry>0xfffffff,则G=B+D+carry-0x10000000,carry=1
若carry=0,则F=A,S=0
若carry=1,A<0xfffffff,则F=A+1,S=0
若carry=1,A=0xfffffff,则F=0,S=1
/*****************************************************************/
CBigInt CBigInt::Add(CBigInt& A)
{
CBigInt X;
if(X.m_nSign==A.m_nSign)
{
X.Mov(*this);
int carry=0;
unsigned __int64 sum=0;
if(X.m_nLength;
sum=sum+X.m_ulvalue+carry;
X.m_ulvalue=(unsigned long)sum;
if(sum>0xffffffff)carry=1;
else carry=0;
}
if(X.m_nLength=E,则H=C-E,carry(借位标志)=0
若C=D,则G=B-carry-D,carry=0
若B-carry1,则F=A-1
若carry=1,A=1,则F=0
/*****************************************************************/
CBigInt CBigInt::Sub(CBigInt& A)
{
CBigInt X;
if(m_nSign==A.m_nSign)
{
X.Mov(*this);
int cmp=X.Cmp(A);
if(cmp==0){X.Mov(0);return X;}
int len,carry=0;
unsigned __int64 num;
unsigned long *s,*d;
if(cmp>0)
{
s=X.m_ulvalue;
d=A.m_ulvalue;
len=X.m_nLength;
}
if(cmp<0)
{
s=A.m_ulvalue;
d=X.m_ulvalue;
len=A.m_nLength;
X.m_nSign=1-X.m_nSign;
}
for(int i=0;i-carry)>=d)
{
X.m_ulvalue=s-carry-d;
carry=0;
}
else
{
num=0x100000000+s;
X.m_ulvalue=(unsigned long)(num-carry-d);
carry=1;
}
}
while(X.m_ulvalue[len-1]==0)len--;
X.m_nLength=len;
return X;
}
else{X.Mov(A);X.m_nSign=1-X.m_nSign;return Add(X);}
}
//大数相乘
//调用形式:N.Mul(A),返回值:N*A
/******************************************************************/
例如:
A B C
* D E
----------------
= S F G H
+ T I J K
----------------
= U V L M N
其中,SFGH=ABC*E,TIJK=ABC*D
而对于:
A B C
* ????%?e??????琀汹??????? ?tР?????;E
-------------
= S F G H
其中,若C*E<=0xffffffff,则H=C*E,carry(进位标志)=0
若C*E>0xffffffff,则H=(C*E)&0xffffffff
carry=(C*E)/0xffffffff
若B*E+carry<=0xffffffff,则G=B*E+carry,carry=0
若B*E+carry>0xffffffff,则G=(B*E+carry)&0xffffffff
carry=(B*E+carry)/0xffffffff
若A*E+carry<=0xffffffff,则F=A*E+carry,carry=0
若A*E+carry>0xffffffff,则F=(A*E+carry)&0xffffffff
carry=(A*E+carry)/0xffffffff
S=carry
/*****************************************************************/
CBigInt CBigInt::Mul(CBigInt& A)
{
CBigInt X,Y;
unsigned __int64 mul;
unsigned long carry;
for(int i=0;i+carry;
Y.m_ulvalue[j]=(unsigned long)mul;
carry=(unsigned long)(mul>>32);
}
if(carry&&(Y.m_nLength=i;k--)Y.m_ulvalue[k]=Y.m_ulvalue[k-i];
for(k=0;k0)
{
if(Y.m_ulvalue[Y.m_nLength-1]>A.m_ulvalue[A.m_nLength-1])
{
len=Y.m_nLength-A.m_nLength;
div=Y.m_ulvalue[Y.m_nLength-1]/(A.m_ulvalue[A.m_nLength-1]+1);
}
else if(Y.m_nLength>A.m_nLength)
{
len=Y.m_nLength-A.m_nLength-1;
num=Y.m_ulvalue[Y.m_nLength-1];
num=(num<<32)+Y.m_ulvalue[Y.m_nLength-2];
if(A.m_ulvalue[A.m_nLength-1]==0xffffffff)div=(num>>32);
else div=num/(A.m_ulvalue[A.m_nLength-1]+1);
}
else
{
X.Mov(X.Add(1));
break;
}
Z.Mov(div);
Z.m_nLength+=len;
for(int i=Z.m_nLength-1;i>=len;i--)Z.m_ulvalue=Z.m_ulvalue[i-len];
for(i=0;i=0;
X.Mov(X.Add(Z));
Z.Mov(Z.Mul(A));
Y.Mov(Y.Sub(Z));
}
if(Y.Cmp(A)==0)X.Mov(X.Add(1));
if(m_nSign+A.m_nSign==1)X.m_nSign=0;
else X.m_nSign=1;
return X;
}
//大数求模
//调用形式:N.Mod(A),返回值:N%A
//求模与求商原理相同
CBigInt CBigInt::Mod(CBigInt& A)
{
CBigInt X,Y;
int len;
unsigned __int64 num,div;
unsigned long carry=0;
X.Mov(*this);
while(X.Cmp(A)>0)
{
if(X.m_ulvalue[X.m_nLength-1]>A.m_ulvalue[A.m_nLength-1])
{
len=X.m_nLength-A.m_nLength;
div=X.m_ulvalue[X.m_nLength-1]/(A.m_ulvalue[A.m_nLength-1]+1);
}
else if(X.m_nLength>A.m_nLength)
{
len=X.m_nLength-A.m_nLength-1;
num=X.m_ulvalue[X.m_nLength-1];
num=(num<<32)+X.m_ulvalue[X.m_nLength-2];
if(A.m_ulvalue[A.m_nLength-1]==0xffffffff)div=(num>>32);
else div=num/(A.m_ulvalue[A.m_nLength-1]+1);
}
else
{
X.Mov(X.Sub(A));
break;
}
Y.Mov(div);
Y.Mov(Y.Mul(A));
Y.m_nLength+=len;
for(int i=Y.m_nLength-1;i>=len;i--)Y.m_ulvalue=Y.m_ulvalue[i-len];
for(i=0;i=0;
X.Mov(X.Sub(Y));
}
if(X.Cmp(A)==0)X.Mov(0);
return X;
}
//暂时只给出了十进制字符串的转化
int CBigInt::InPutFromStr(CString& str, const unsigned int system=DEC)
{
int len=str.GetLength();
Mov(0);
for(int i=0;i-48;
Mov(Add(k));
}
return 0;
}
//暂时只给出了十进制字符串的转化
int CBigInt::OutPutToStr(CString& str, const unsigned int system=DEC)
{
str="";
char ch;
CBigInt X;
X.Mov(*this);
while(X.m_ulvalue[X.m_nLength-1]>0)
{
ch=X.Mod(system)+48;
str.Insert(0,ch);
X.Mov(X.Div(system));
}
return 0;
}
//欧几里德算法求:Y=X.Euc(A),使满足:YX mod A=1
//相当于对不定方程ax-by=1求最小整数解
//实际上就是初中学过的辗转相除法
/********************************************************************/
例如:11x-49y=1,求x
11 x - 49 y = 1 a)
49%11=5 -> 11 x - 5 y = 1 b)
11%5 =1 -> x - 5 y = 1 c)
令y=1 代入c)式 得x=6
令x=6 代入b)式 得y=13
令y=13 代入a)式 得x=58
/********************************************************************/
CBigInt CBigInt::Euc(CBigInt& A)
{
CBigInt X,Y;
X.Mov(*this);
Y.Mov(A);
if((X.m_nLength==1)&&(X.m_ulvalue[0]==1))return X;
if((Y.m_nLength==1)&&(Y.m_ulvalue[0]==1)){X.Mov(X.Sub(1));return X;}
if(X.Cmp(Y)==1)X.Mov(X.Mod(Y));
else Y.Mov(Y.Mod(X));
X.Mov(X.Euc(Y));
Y.Mov(*this);
if(Y.Cmp(A)==1)
{
X.Mov(X.Mul(Y));
X.Mov(X.Sub(1));
X.Mov(X.Div(A));
}
else
{
X.Mov(X.Mul(A));
X.Mov(X.Add(1));
X.Mov(X.Div(Y));
}
return X;
}
//蒙哥马利算法求:Y=X.Mon(A,B),使满足:X^A mod B=Y
//俺估计就是高中学过的反复平方法
CBigInt CBigInt::Mon(CBigInt& A, CBigInt& B)
{
CBigInt X,Y,Z;
X.Mov(1);
Y.Mov(*this);
Z.Mov(A);
while((Z.m_nLength!=1)||Z.m_ulvalue[0])
{
if(Z.m_ulvalue[0]&1)
{
Z.Mov(Z.Sub(1));
X.Mov(X.Mul(Y));
X.Mov(X.Mod(B));
}
else
{
Z.Mov(Z.Div(2));
Y.Mov(Y.Mul(Y));
Y.Mov(Y.Mod(B));
}
}
return X;
}
最后需要说明的是因为在VC里面存在一个__int64类型可以
用来计算进位与借位值,所以将大数当作0x100000000进制
进行运算是可能的,而在其他编译系统中如果不存在64位
整形,则可以采用0x40000000进制,由于在0x40000000
进制中,对任何两个“数字”进行四则运算,结果都在
0x3fffffff*03fffffff之间,小于0xffffffff,都可以用
一个32位无符号整数来表示。事实上《楚汉棋缘》采用的
freelip大数库正是运用了0x40000000进制来表示大数的,
所以其反汇编后大数的值在内存中表现出来有些“奇怪”。
好了,俺的大数运算库源代码将附在本贴之后,在VC中可以
直接编译通过,如果大家在使用中发现有Bug,希望能够通
知俺及时改正,谢谢!
由于代码中的“TAB”控制符被浏览器忽略,建议下载源码
参照阅读
|