Instruction Issue: (指令发送)它是第一个CPU管道,用于接收内存送到的指令,并把它发到执行单元。IPC(Instructions Per Clock Cycle,指令/时钟周期)表示在一个时钟周期用可以完成的指令数目。
KNI: (Katmai New Instructions,Katmai?噶罴碨SE) Latency(潜伏期)从字面上了解其含义是比较困难的,实际上,它表示完全执行一个指令所需的时钟周期,潜伏期越少越好。严格来说,潜伏期包括一个指令从接收到发送的全过程。现今的大多数x86指令都需要约5个时钟周期,但这些周期之中有部分是与其它指令交迭在一起的(并行处理),因此CPU制造商宣传的潜伏期要比实际的时间长。
LDT: (Lightning Data Transport,闪电数据传输总线)K8采用的新型数据总线,外频在200MHz以上。
PCMCIA (Personal Computer Memory Card International Association):是一种标准的卡片型扩充接口,多半用于笔记型计算机上或是其它外围产品,其种类可以分为:
Type 1:3.3mm的厚度,常作成SRAM、Flash RAM 的记忆卡以及最近打印机所使用的DRAM记忆卡。
Type 2:5.5mm的厚度,通常设计为笔记计算机所使用的调制解调器接口(Modem)。
Type 3:10.5mm的厚度,被运用为连接硬盘的ATA接口。
Type 4:小型的PCMCIA卡,大部用于数字相机。
c.节能功能:目前的节能功能主要有STD和STR两种。STD(Suspend to Disk),挂起到硬盘,是指系统在深度休眠时,将目前的资料保存在硬盘上,当再次开机时可以省去重启的时间,目前STD技术已属于淘汰的类型,更新的是STR技术。STR(Suspend to Ram),挂起到内存,即当系统深度休眠时将资料保存在内存中,重启到原来的状态只需要3秒左右。目前的较新的主板(如815主板)都支持此技术。
d.异步内存调整技术: 在VIA的芯片组VIA Apollo Pro 133/133A和KT 133等中,有一项内存和外频异步运行的功能。就是在标准外频下(如66MHz或100MHz等),可以将内存运行的频率比外频低33MHz或高33MHz。这项技术极大地方便了一些老用户,这样就可以使用将比较新的内存和比较老的CPU(或比较老的内存和比较新的CPU)进行合理搭配,充分发挥其功能。但要注意的是,如果在非标准外频下(如83MHz),那么内存运行的频率将不会按照这个规律增加,具体的增加值会因具体情况有所不同。
突发数据传输率(Burst data transfer rate):指的是电脑通过数据总线从硬盘内部缓存区中所读取数据的最高速率。也叫外部数据传输率(External data transfer rate)。目前采用UDMA/66技术的硬盘的外部传输率已经达到了66.6MB/s。
最大内部数据传输率(Internal data transfer rate): 指磁头至硬盘缓存间的最大数据传输率,一般取决于硬盘的盘片转速和盘片数据线密度(指同一磁道上的数据间隔度)。也叫持续数据传输率(sustained transfer rate)。一般采用UDMA/66技术的硬盘的内部传输率也不过25-30MB/s,只有极少数产品超过30MB/s,由于内部数据传输率才是系统真正的瓶颈,因此大家在购买时要分清这两个概念。不过一般来讲,硬盘的转速相同时,单碟容量大的内部传输率高;在单碟容量相同时,转速高的硬盘的内部传输率高。
自动检测分析及报告技术(Self-Monitoring Analysis and Report Technology,简称S.M.A.R.T): 现在出厂的硬盘基本上都支持S.M.A.R.T技术。这种技术可以对硬盘的磁头单元、盘片电机驱动系统、硬盘内部电路以及盘片表面媒介材料等进行监测,当S.M.A.R.T监测并分析出硬盘可能出现问题时会及时向用户报警以避免电脑数据受到损失。S.M.A.R.T技术必须在主板支持的前提下才能发生作用,而且S.M.A.R.T技术也不能保证能预报出所有可能发生的硬盘故障。
PRML(局部响应最大拟然,Partial Response Maximum Likelihood):除了磁头技术的日新月异之外,磁记录技术也是影响硬盘性能非常关键的一个因素。当磁记录密度达到某一程度后,两个信号之间相互干扰的现象就会非常严重。为了解决这一问题,人们在硬盘的设计中加入了PRML技术。PRML读取通道方式可以简单地分成两个部分。首先是将磁头从盘片上所读取的信号加以数字化,并将未达到标准的信号加以舍弃,而没有将信号输出。这个部分便称为局部响应。最大拟然部分则是拿数字化后的信号模型与PRML芯片本身的信号模型库加以对比,找出最接近、失真度最小的信号模型,再将这些信号重新组合而直接输出数据。使用PRML方式,不需要像脉冲检测方式那样高的信号强度,也可以避开因为信号记录太密集而产生的相互干扰的现象。 磁头技术的进步,再加上目前记录材料技术和处理技术的发展,将使硬盘的存储密度提升到每平方英寸10GB以上,这将意味着可以实现40GB或者更大的硬盘容量。
全程访问时间(max full seek):指磁头开始移动直到最后找到所需要的数据块所用的全部时间,单位为毫秒(ms)。
外部数据传输率:通称突发数据传输率(burst data transfer rate):指从硬盘缓冲区读取数据的速率,常以数据接口速率代替,单位为MB/S。目前主流硬盘普通采用的是Ultra ATA/66,它的最大外部数据率即为66.7MB/s,2000年推出的Ultra ATA/100,理论上最大外部数据率为100MB/s,但由于内部数据传输率的制约往往达不到这么高。
ST-506/412接口:这是希捷开发的一种硬盘接口,首先使用这种接口的硬盘为希捷的ST-506及ST-412。ST-506接口使用起来相当简便,它不需要任何特殊的电缆及接头,但是它支持的传输速度很低,因此到了1987年左右这种接口就基本上被淘汰了,采用该接口的老硬盘容量多数都低于200MB。早期IBM PC/XT和PC/AT机器使用的硬盘就是ST-506/412硬盘或称MFM硬盘-MFM(Modified Frequency Modulation)是指一种编码方案。
ESDI接口:即(Enhanced Small Drive Interface)接口,它是迈拓公司于1983年开发的。其特点是将编解码器放在硬盘本身之中,而不是在控制卡上,理论传输速度是前面所述的ST-506的2…4倍,一般可达到10Mbps。但其成本较高,与后来产生的IDE接口相比无优势可言,因此在九十年代后就被淘汰了。
Anti-aliasing(边缘柔化或抗锯齿):由于3D图像中的物体边缘总会或多或少的呈现三角形的锯齿,而抗锯齿就是使画面平滑自然,提高画质以使之柔和的一种方法。如今最新的全屏抗锯齿(Full Scene Anti-Aliasing)可以有效的消除多边形结合处(特别是较小的多边形间组合中)的错位现象,降低了图像的失真度。全景抗锯齿在进行处理时,须对图像附近的像素进行2-4次采样,以达到不同级别的抗锯齿效果。3dfx在驱动中会加入对2x2或4x4抗锯齿效果的选择,根据串联芯片的不同,双芯片Voodoo5将能提供2x2的抗锯齿效果,而四芯片的卡则能提供更高的4x4抗锯齿级别。简而言之,就是将图像边缘及其两侧的像素颜色进行混合,然后用新生成的具有混合特性的点来替换原来位置上的点以达到柔化物体外形、消除锯齿的效果。
S3TL(Transform and lighting)(“变形与光源”技术):该技术类似于nVidia最新的T&L技术,它可以大大减轻CPU的3D管道的几何运算过程。“变形与光源”引擎可用于将来的OpenGL和DirectX 7图形接口上,使游戏中的多边形生成率提高到4到10倍。这极大的减轻了软件的复杂性,也使CPU的运算负担得到极大的降低,因此对于CPU浮点速度较慢的系统来说,在此技术的支持下也能有较高速度的图形处理能力。
T&L(Transform and Lighting)变形与光源处理:这是nVidia为提高画质而研究出来的一种新型技术,以往的显卡技术中,为了使物体图象真实,就不得不大量增加多边形设计,这样就会导致速度下降,而采用较少的多边形呢,画面又很粗糙。GeForce256中采用的这种T&L技术其特点是能在不增加物体多边形的前提下,进一步提高物体表面的边缘圆滑程度,使图像更真实准确生动。此外光源的作用也得到了重视:传统的光源处理较为单一,无生动感可言,而GeForce256拥有强大的光源处理能力,在硬件上它支持8个独立光源,加上GPU的支持,即时处理的光源将让画面变得更加生动真实,可以产生带有反射性质的光源效果。
Trilinear Filtering(三线性过滤):三线性过滤就是用来减轻或消除不同组合等级纹理过渡时出现的组合交叠现象。它必须结合双线性过滤和组合式处理映射一并使用。三线性过滤通过使用双线性过滤从两个最为相近的LOD等级纹理中取样来获得新的像素值,从而使两个不同深度等级的纹理过渡能够更为平滑。也因为如此,三线性过滤必须使用两次的双线性过滤,也就是必须计算2x4=8个像素的值。对于许多3D加速开来说,这会需要它们两个时钟周期的计算时间。